Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation.

نویسندگان

  • Geng-Xian Shi
  • Ling Jin
  • Douglas A Andres
چکیده

Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) is a potent neuropeptide that acts through G-protein-coupled receptors. While it is well established that PACAP mediates both neurotrophic and neurodevelopmental effects, the signaling cascades that underlie these diverse actions remain incompletely characterized. Here we show that the Ras-related Rin GTP-binding protein, a GTPase that is expressed predominantly in neurons, is regulated by PACAP38 signaling, and loss-of-function analysis demonstrates that Rin makes an essential contribution to PACAP38-mediated pheochromocytoma cell differentiation. Rin is activated following stimulation of both Gsalpha and Gialpha cascades but does not rely upon cyclic AMP (cAMP)-, Ca(2+)-, or Epac-dependent signaling pathways. Instead, Rin is activated in a Src kinase-dependent manner. Surprisingly, Rin knockdown significantly inhibits PACAP38-mediated neurite outgrowth, without affecting mitogen-activated protein kinase signaling cascades. Instead, Rin loss attenuates PACAP38-mediated HSP27 activation by disrupting a cAMP-protein kinase A cascade. RNA interference-mediated HSP27 silencing suppresses both PACAP38- and Rin-mediated neurite outgrowth, while expression of a constitutively active Rin mutant increases both HSP27 protein and phospho-HSP27 levels, supporting a role for Rin-HSP27 signaling in neuronal differentiation. Together, these observations identify an unsuspected role for Rin in neuronal PACAP signaling and establish a novel Galpha-Src-Rin-HSP27 signal transduction pathway as a critical element in PACAP38-mediated neuronal differentiation signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Src-dependent TrkA Transactivation Is Required for Pituitary Adenylate Cyclase-activating Polypeptide 38-mediated Rit Activation and Neuronal Differentiation

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent neuropeptide that possesses both neurotrophic and neurodevelopmental effects. Recently, the Rit GTPase was found to be activated by a novel Galpha/cAMP/exchange protein activated by cyclic AMP (Epac)-dependent signaling pathway and required for PACAP-dependent cAMP response element-binding protein activation and neuronal dif...

متن کامل

PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases1

The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC(1) and VIP/PACAP receptor type 2 (VPAC(2)) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP)...

متن کامل

Inhibition of food intake by PACAP in the hypothalamic ventromedial nuclei is mediated by NMDA receptors.

Central injections of pituitary adenylate cyclase-activating polypeptide (PACAP) into the ventromedial nuclei (VMN) of the hypothalamus produce hypophagia that is dependent upon the PAC1 receptor; however, the signaling downstream of this receptor in the VMN is unknown. Though PACAP signaling has many targets, this neuropeptide has been shown to influence glutamate signaling in several brain re...

متن کامل

Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway.

Pituitary adenylate cyclase-activating polypeptides (PACAP-27 and PACAP-38) are neuropeptides of the vasoactive intestinal polypeptide (VIP)/secretin/glucagon family. PACAP receptors are expressed in different brain regions, including cerebellum. We used primary culture of rat cerebellar granule neurons to study the effect of PACAP-38 on apoptosis induced by potassium deprivation. We demonstrat...

متن کامل

Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src.

At CA1 synapses, activation of NMDA receptors (NMDARs) is required for the induction of both long-term potentiation and depression. The basal level of activity of these receptors is controlled by converging cell signals from G-protein-coupled receptors and receptor tyrosine kinases. Pituitary adenylate cyclase activating peptide (PACAP) is implicated in the regulation of synaptic plasticity bec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 16  شماره 

صفحات  -

تاریخ انتشار 2008